1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
|
import os import json import threading import numpy as np from PIL import Image
import tensorflow as tf from keras import losses from keras import backend as K from keras.utils import plot_model from keras.preprocessing import image from keras.preprocessing.sequence import pad_sequences from keras.layers import Input, Dense, Flatten from keras.layers.core import Reshape, Masking, Lambda, Permute from keras.layers.recurrent import GRU, LSTM from keras.layers.wrappers import Bidirectional, TimeDistributed from keras.layers.normalization import BatchNormalization from keras.layers.convolutional import Conv2D, MaxPooling2D, ZeroPadding2D from keras.optimizers import SGD, Adam from keras.models import Model from keras.callbacks import EarlyStopping, ModelCheckpoint, LearningRateScheduler, TensorBoard
from imp import reload import model import io import sys reload(sys)
img_h = 32 img_w = 280 batch_size = 128 maxlabellength = 10
def get_session(gpu_fraction=1.0):
num_threads = os.environ.get('OMP_NUM_THREADS') gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=gpu_fraction)
if num_threads: return tf.Session(config=tf.ConfigProto( gpu_options=gpu_options, intra_op_parallelism_threads=num_threads)) else: return tf.Session(config=tf.ConfigProto(gpu_options=gpu_options))
def readfile(filename): res = [] with open(filename, 'r') as f: lines = f.readlines() for i in lines: res.append(i.strip()) dic = {} for i in res: p = i.split(' ') dic[p[0]] = p[1:] return dic
class random_uniform_num(): """ 均匀随机,确保每轮每个只出现一次 """ def __init__(self, total): self.total = total self.range = [i for i in range(total)] np.random.shuffle(self.range) self.index = 0 def get(self, batchsize): r_n=[] if(self.index + batchsize > self.total): r_n_1 = self.range[self.index:self.total] np.random.shuffle(self.range) self.index = (self.index + batchsize) - self.total r_n_2 = self.range[0:self.index] r_n.extend(r_n_1) r_n.extend(r_n_2) else: r_n = self.range[self.index : self.index + batchsize] self.index = self.index + batchsize
return r_n
def gen(data_file, image_path, batchsize=128, maxlabellength=10, imagesize=(32, 280)): image_label = readfile(data_file) _imagefile = [i for i, j in image_label.items()] x = np.zeros((batchsize, imagesize[0], imagesize[1], 1), dtype=np.float) labels = np.ones([batchsize, maxlabellength]) * 10000 input_length = np.zeros([batchsize, 1]) label_length = np.zeros([batchsize, 1])
r_n = random_uniform_num(len(_imagefile)) _imagefile = np.array(_imagefile) while 1: shufimagefile = _imagefile[r_n.get(batchsize)] for i, j in enumerate(shufimagefile): img1 = Image.open(os.path.join(image_path, j)).convert('L') img = np.array(img1, 'f') / 255.0 - 0.5
x[i] = np.expand_dims(img, axis=2) str = image_label[j] label_length[i] = len(str)
if(len(str) <= 0): print("len < 0", j) input_length[i] = imagesize[1] // 8 labels[i, :len(str)] = [int(k) - 1 for k in str]
inputs = {'the_input': x, 'the_labels': labels, 'input_length': input_length, 'label_length': label_length, } outputs = {'ctc': np.zeros([batchsize])} yield (inputs, outputs)
def ctc_lambda_func(args): y_pred, labels, input_length, label_length = args return K.ctc_batch_cost(labels, y_pred, input_length, label_length)
def get_model(img_h, nclass): input = Input(shape=(img_h, None, 1), name='the_input') y_pred = model.dense_cnn(input, nclass)
basemodel = Model(inputs=input, outputs=y_pred) basemodel.summary()
labels = Input(name='the_labels', shape=[None], dtype='float32') input_length = Input(name='input_length', shape=[1], dtype='int64') label_length = Input(name='label_length', shape=[1], dtype='int64')
loss_out = Lambda(ctc_lambda_func, output_shape=(1,), name='ctc')([y_pred, labels, input_length, label_length])
model = Model(inputs=[input, labels, input_length, label_length], outputs=loss_out) model.compile(loss={'ctc': lambda y_true, y_pred: y_pred}, optimizer='adam', metrics=['accuracy'])
return basemodel, model
if __name__ == '__main__': char_set = io.open('char_std_5990.txt', 'r', encoding='utf-8').readlines() char_set = ''.join([ch.strip('\n') for ch in char_set][1:]) nclass = len(char_set)
K.set_session(get_session()) reload(model) basemodel, model = get_model(img_h, nclass)
modelPath = './models/pretrain_model/keras.h5' if os.path.exists(modelPath): print("Loading model weights...") basemodel.load_weights(modelPath) print('done!')
train_loader = gen('data_train.txt', './images', batchsize=batch_size, maxlabellength=maxlabellength, imagesize=(img_h, img_w)) test_loader = gen('data_test.txt', './images', batchsize=batch_size, maxlabellength=maxlabellength, imagesize=(img_h, img_w))
checkpoint = ModelCheckpoint(filepath='./models/model-weights-{epoch:02d}-{val_loss:.2f}.h5', monitor='val_loss', save_best_only=False, save_weights_only=True) lr_schedule = lambda epoch: 0.0005 * 0.4**epoch learning_rate = np.array([lr_schedule(i) for i in range(10)]) changelr = LearningRateScheduler(lambda epoch: float(learning_rate[epoch])) earlystop = EarlyStopping(monitor='val_loss', patience=2, verbose=1) tensorboard = TensorBoard(log_dir='./models/logs', write_graph=True)
print('-----------Start training-----------') model.fit_generator(train_loader, steps_per_epoch = 3607567 // batch_size, epochs = 10, initial_epoch = 0, validation_data = test_loader, validation_steps = 36440 // batch_size, callbacks = [checkpoint, earlystop, changelr, tensorboard])
|